

 atomvm_packbeam

 v0.7.5

 Table of contents

 	atomvm_packbeam

 	Changelog

 	AtomVM Update Instructions

 	LICENSE

 	Contributing

 	Contributor Covenant Code of Conduct

 	
 Modules

 	packbeam

 	packbeam_api

 atomvm_packbeam

An Erlang Escript and library used to generate an AtomVM AVM file from a set of files (beam files, previously built AVM files, or even arbitrary data files).
This tool roughly approximates the functionality of the AtomVM PackBEAM utility, except:
	Support for multiple data types, include beam files, text files, etc
	"Pruned" extraction of beams from AVM files, so that only the beams that are needed are packed
	Support for embedded OTP applications in your PackBEAM files.

The packbeam tool may be used on its own as a stand-alone command-line utility. More typically, it is used internally as part of the atomvm_rebar3_plugin rebar3 plugin.
Releases and
accompanying documentation are available on
hex.pm. The documentation for the current master branch is always available from
the atomvm_packbeam GitHub pages.
Prerequisites
Building packbeam requires a version of Erlang/OTP compatible with AtomVM, as well as a local installation of rebar3. Optionally, any recent version of make may be used to simplify builds. Consult the AtomVM Documentation for information about supported OTP versions.
Build
To build a release, run the following commands:
shell$ rebar3 as prod release
shell$ rebar3 as prod tar
These commands will create an Erlang tar archive containing a versioned release of the atomvm_packbeam tool, e.g.,
...
===> Tarball successfully created: _build/prod/rel/atomvm_packbeam/atomvm_packbeam-0.7.5.tar.gz
in your local working directory.
IMPORTANT! The files in this tar archive do not contain the atomvm_packbeam prefix, so extracting these files without care will create a bin and lib directory in the location into which files from the archive is extracted. See the example below before proceeding!

You can use the install.sh script to install the atomvm_packbeam utility into a location on your local machine. You will need to specify the prefix location into which you want to install the utility, together with it's current version.
shell$./install.sh /opt/atomvm_packbeam 0.7.5
atomvm_packbeam version 0.7.5 installed in /opt/atomvm_packbeam.
Note. Some prefix locations may require root permissions to write files to.

Set your PATH environment variable to include the bin directory of the installation prefix (if not already set), and you should then be able to run the packbeam command included therein.
For example:
shell$ export PATH=/opt/atomvm_packbeam/bin:$PATH
shell$ packbeam help
Syntax:
 packbeam <sub-command> <options> <args>
 ...
packbeam command
The packbeam command is used to create an AVM file from a list of beam and other file types, to list the contents of an AVM file, or to delete elements from an AVM file.
The general syntax of the packbeam command takes the form:
packbeam <sub-command> <args>
On-line help is available via the help sub-command:
shell$ packbeam help

packbeam version 0.7.5

Syntax:
 packbeam <sub-command> <options> <args>

The following sub-commands are supported:

 create <options> <output-avm-file> [<input-file>]+
 where:
 <output-avm-file> is the output AVM file,
 [<input-file>]+ is a list of one or more input files,
 and <options> are among the following:
 [--prune|-p] Prune dependencies
 [--start|-s <module>] Start module
 [--remove_lines|-r] Remove line number information from AVM files

 list <options> <avm-file>
 where:
 <avm-file> is an AVM file,
 and <options> are among the following:
 [--format|-f csv|bare|default] Format output

 extract <options> <avm-file> [<element>]*
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to extract
 (if empty, then extract all elements)
 and <options> are among the following:
 [--out|-o <output-directory>] Output directory into which to write elements
 (if unspecified, use the current working directory)

 delete <options> <avm-file> [<element>]+
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to delete,
 and <options> are among the following:
 [--out|-o <output-avm-file>] Output AVM file

 version
 Print version and exit

 help
 Print this help
The packbeam command will return an exit status of 0 on successful completion of a command. An unspecified non-zero value is returned in the event of an error.
The packbeam sub-commands are described in more detail below.
create sub-command
To create an AVM file from a list of beam files, use the create sub-command to create an AVM file. The first argument is take to be the output AVM file, following by the files you would like to add, e.g.,
shell$ packbeam create mylib.avm mylib/ebin/mylib.beam mylib/ebin/foo.beam mylib/ebin/bar.beam
This command will create an AtomVM AVM file suitable for use with AtomVM.
The input files specified in the create sub-command may be among the following types:
	compiled BEAM files (typically ending in .beam)
	Previously created AVM files
	"Normal" files, e.g., text files, binary files, etc.

Note that beam files specified are stripped of their path information, inside of the generated AVM file. Any files that have the same name will be added in the order they are listed on the command line. However, AtomVM will only resolve the first such file when loading modules at run-time.
Start Entrypoint
If you are building an application that provides a start entrypoint (as opposed to a library, suitable for inclusion in another AVM file), then at least one beam module in an AVM file must contain a start/0 entry-point, i.e., a function called start with arity 0. AtomVM will use this entry-point as the first function to execute, when starting.
Note. It is conventional, but not required, that the first beam file in an AVM file contains the start/0 entry-point. AtomVM will use the first BEAM file that contains an exported start/0 function as the entry-point for the application.

If your application has multiple modules with exported start/0 functions, you may use the --start <module> (alternatively, -s <module>) option to specify the module you would like placed first in your AVM file. The <module> parameter should be the module name (without the .beam suffix, e.g., main).
A previously created AVM file file may be supplied as input (including the same file specified as output, for example). The contents of any input AVM files will be included in the output AVM file. For example, if you are building a library of BEAM files (for example, none of which contain a start/0 entry-point), you may want to archive these into an AVM file, which can be used for downstream applications.
In addition, you may specify a "normal" (i.e., non-beam or non-AVM) file. Normal files are labeled with the path specified on the command line.
shell$ packbeam create mylib.avm mylib.avm mylib/priv/sample.txt
Note. It is conventional in AtomVM for normal files to have the path <module-name>/priv/<file-name>.

Pruning
If you specify the --prune (alternatively, -p) flag, then packbeam will only include beam files that are transitively dependent on the entry-point beam. Transitive dependencies are determined by imports, as well as use of an atom in a module (e.g, as the result of a dynamic function call, based on a module name).
If there is no beam file with a start/0 entry-point defined in the list of input modules and the --prune flag is used, the command will fail. You should not use the --prune flag if you are trying to build libraries suitable for inclusion on other AtomVM applications.
Line number information
By default, the packbeam tool will generate line number information for embedded BEAM files. Line number information is included in Erlang stacktraces, giving developers more clues into bugs in their programs. However, line number information does increase the size of AVM files, and in some cases can have an impact on memory in running applications.
For production applications that have no need for line number information, we recommend using the -r (or --remove_lines) flags, which will strip line number information from embedded BEAM files.
list sub-command
The list sub-command will print the contents of an AVM file to the standard output stream.
To list the elements of an AVM file, specify the location of the AVM file to input as the first argument:
shell$ packbeam list mylib.avm
mylib.beam * [284]
foo.beam [276]
bar.beam [252]
mylib/priv/sample.txt [29]
The elements in the AVM file are printed to the standard output stream and are listed on each line. If a beam file contain an exported start/0 function, it will be marked with an asterisk (*). The size in bytes of each module is also printed in square brackets ([]).
You may use the --format (alternatively, -f) option to specify an output format. The supported formats are:
	csv Output elements in comma-separated value format. Fields include the module name, whether the element is a BEAM file, whether the element provides a start/0 entrypoint, and the size (in bytes) of the element.
	bare Output just the module name, with no annotations.
	default Output the module name, size (in brackets), and whether the file provides a start/0 entrypoint, indicated by an asterisk (*). The default output is used if the --format option is not specified.

extract sub-command
The extract sub-command can be used to extract elements from an AVM file.
To extract one or more elements from an AVM file, specify the location of the AVM file from which to extract elements, followed by the list of elements (as displayed via the list sub-command) to extract. If no elements are listed, then all elements from the AVM file will be extracted.
Non-BEAM ("normal") files that contain paths in their names will be extracted into a directory tree that reflects the path used in the element name. For example, if the element name is mylib/priv/sample.txt, then the sample.txt file will be extracted into the mylib/priv directory (relative to the output directory, detailed below).
You may optionally specify an output directory using the --out option, which will contain the extracted contents of the input AVM file. This directory must exist beforehand, or a runtime error will occur. If no output directory is specified, elements will be extracted into the current working directory.
For example:
shell$ mkdir mydir
shell$ packbeam extract -out mydir mylib.avm foo.beam mylib/priv/sample.txt
Writing to mydir ...
x foo.beam
x mylib/priv/sample.txt
delete sub-command
The delete sub-command can be used to remove elements from an AVM file.
To delete one or more elements from an AVM file, specify the location of the AVM file from which to remove elements, followed by the list of elements (as displayed via the list sub-command) to remove. You may optionally specify an output AVM file using the --out option, which will contain the contents of the input AVM file, minus the specified elements. If no output AVM is specified, the input AVM file will be overwritten.
For example:
shell$ packbeam delete -out mylib2.avm mylib.avm foo.beam bar.beam
shell$ packbeam list mylib2.avm
mylib.beam * [284]
mylib/priv/sample.txt [29]
packbeam_api API
In addition to being an escript command-line utility, this project provides an Erlang API and library for manipulating AVM files. Simply include atomvm_packbeam as a dependency in your rebar.config, and you will have access to this API.
For more detailed information about this API, see the packbeam_api Reference.

Creating PackBEAM files
To create a PackBEAM file, use the packbeam_api:create/2 function. Specify the output path of the AVM you would like to create, followed by a list of paths to the files that will go into the AVM file. Typically, these paths are a list of BEAM files, though you can also include plain data files, in addition to previously created AVM files. Previously-created AVM files will be copied into the output AVM file.
Note. Specify the file system paths to all files. BEAM file path information will be stripped from the AVM element path data. Any plain data files (non-BEAM files) will retain their path information. See the AtomVM Documentation about how to create plain data files in AVM files that users can retrieved via the atomvm:read_priv/2 function.

%% erlang
ok = packbeam_api:create(
 "/path/to/output.avm", [
 "/path/to/foo.beam",
 "/path/to/bar.beam",
 "/path/to/myapp/priv/sample.txt",
 "/path/to/some_lib.avm"
]
).
Alternatively, you may specify a set of options with the packbeam_api:create/3 function, which takes a map as the third parameter.
	Key	Type	Default	Description
	prune	boolean()	false	Specify whether to prune the output AVM file. Pruned AVM files can take considerably less space and hence may lead to faster development times.
	start	module()	n/a	Specify the start module, if it can't be determined automatically from the application.
	application	module()	n/a	Specify the application module. The <application>.app file will be encoded and included as an element in the AVM file with the path <module>/priv/application.bin
	include_lines	boolean()	true	Specify whether to include line number information in generated AVM files.

Listing the contents of PackBEAM files
You can list the contents of PackBEAM files using the packbeam_api:list/1 function. Specify the file system path to the PackBEAM file you would like to list:
%% erlang
AVMElements = packbeam_api:list("/path/to/input.avm").
The returned AVMElements is list of an opaque data structures and should not be interpreted by user applications. However, several functions are exposed to retrieve information about elements in this list.
To get the element name, use the packbeam_api:get_element_name/1 function, passing in an AVM element. The return type is a string() and represents the path in the AVM file for the AVM element.
%% erlang
AVMElementName = packbeam_api:get_element_name(AVMElement).
To get the element data (as a binary) use the packbeam_api:get_element_data/1 function, passing in an AVM element. The return type is a binary() containing the actual data in the AVM element.
%% erlang
AVMElementData = packbeam_api:get_element_data(AVMElement).
To get the element module (as an atom) use the packbeam_api:get_element_module/1 function, passing in an AVM element. The return type is a module() and the module name of the AVM element.
Note that if the AVM element is not a BEAM file, this function returns undefined.
%% erlang
AVMElementModule = packbeam_api:get_element_module(AVMElement).
To determine if the element is a BEAM file, use the packbeam_api:is_beam/1 function, passing in an AVM element. The return value is a boolean().
%% erlang
IsBEAM = packbeam_api:is_beam(AVMElement).
To determine if the element is an entrypoint BEAM (i.e., it exports a start/0 function), use the packbeam_api:is_entrypoint/1 function, passing in an AVM element. The return value is a boolean().
%% erlang
IsEntrypoint = packbeam_api:is_entrypoint(AVMElement).
Deleting entries from PackBEAM files
You can delete entries from an AVM file using the packbeam_api:delete/3 function. Specify the file system path to the PackBEAM file you would like to delete from, the output path you would like to write the new AVM file to, and a list of AVM elements you would like to delete:
%% erlang
ok = packbeam_api:delete(
 "/path/to/input.avm",
 "/path/to/ouput.avm",
 ["foo.beam", "myapp/priv/sample.txt"]
).
Note. You may specify the same values for the input and output paths. In this case, the input AVM file will be over-written by the new AVM file.

Extracting entries from PackBEAM files
You can extract elements from an AVM file using the packbeam_api:extract/3 function. Specify the file system path to the PackBEAM file you would like to extract from, a list of AVM elements you would like to extract, and the output directory into which would like to extract the files:
%% erlang
ok = packbeam_api:extract(
 "/path/to/input.avm",
 ["foo.beam", "myapp/priv/sample.txt"],
 "/tmp"
).

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.7.5] - (2025.08.18)
	Fix unnecessary warning about missing sasl
	Corrected install documentation

[0.7.4] - (2025.05.25)
	Add support for OTP-28
	Added missing license files, and CI workflow to ensure reuse compliance

This release includes changes from 0.7.3 that were not included in the release due to a bad release tag.

[0.7.3] (2024.06.06)
	Fix broken create task in the cli tool.

[0.7.2] (2023.11.24)
	Make use of profiles to minimize downstream dependencies
	Fix install.sh script on FreeBSD platform

[0.7.1] (2023.10.22)
	Enhanced packbeam_api to make it more maintainable.
	Changed documentation to use rebar3_ex_doc

[0.7.0] (2022.10.17)
	Added version sub-command to print version to the console
	Added -r, --remove option and removed the -i, --include option, which was ineffective due to a bug. See the Updating notes on the impact of these changes.

[0.6.2] (2023.10.14)
	Added relx stanzas to create a standalone release of the packbeam utility
	Added install scripts to simplify installation for users

[0.6.1] (2023.07.16)
	Added extract sub-command

[0.6.0] (2022.12.18)
Added
	Added ability to include <<"Line">> chunks in BEAM files in generated AVM files
	Added CI build

Changed
	Changed the packbeam_api:create function to take a single map for optional
parameters, instead of coding paramters into function arguments. Previous
versions of the packbeam_api:create function that take optional parameters
have been deprecated.

[0.5.0] (2022.08.28)
Added
	Added ability to specify a module name for ordinary (non-BEAM) files (API-only).
	Added support for tracking dependencies using application spec files as binaries
(API-only)
	Added PropEr test
	Added new format option to the list subcommand, supporting csv, bare,
and default options.

Fixed
	Fixed a bug in parsing non-BEAM files in included AVM files, which would cause
non-BEAM file contents to be loaded incorrectly.

Changed
	Changed the command line syntax to support long and short option names using
GNU-style conventions; deprecated single-hyphen short options.
	Moved packbeam API functionality into packbeam_api module.
Previous packbeam API functions now call corresponding packbeam_api
functions and are deprecated.

[0.4.1] (2022.06.19)
Added
	Added unit tests

Fixed
	Fixed a bug that failed to track atoms that occur in BEAM LitT tables

Changed
	Weakened the test for finding a start BEAM file such that it only requires that the ?BEAM_START_FLAG be set, for compatibility with ExAtomVM.

[0.4.0] (2022.05.21)
Added
	Added erlfmt plugin and formatted code.

Fixed
	Fixed a bug that prevented packbeam files that include priv files from being properly loaded.

[0.3.0] (2022.01.15)
Fixed
	Fixed a bug in pulling in dependent BEAM files based on the atoms table

[0.2.0] (2021.04.03)
Added
	Added support for deployment to hex

Fixed
	Uncompressed literals table

[0.1.0] (2020.05.17)
	Initial Release

 AtomVM Update Instructions

0.6. -> 0.7.
	The default behavior of not generating line number information in BEAM files has changed. By default, line number information will be generated in BEAM files. You can remove line number information using from BEAM files by using the -r (or --remove_lines) flags to the create subcommand. Note that in versions 0.6 of this tool, the --include_lines flag was ignored due to a bug in the code.

 LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2020, Fred Dushin <fred@dushin.net>.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Contributing

Before contributing, please read carefully our Code of Conduct and
the following contribution guidelines.
Please, also make sure to understand the Apache 2.0 license and the
Developer Certificate of Origin.
Last but not least, do not use GitHub issues for vulnerability reports, read instead the
security policy for instructions.
Git Recommended Practises
	Commit messages should have a
	summary and a description
	Avoid trailing white spaces
	Always git pull --rebase
	Clean up your branch history with
git rebase -i
	All your intermediate commits should build

Coding Style
C Code
Identation
	

 Contributor Covenant Code of Conduct - atomvm_packbeam v0.7.5

 Contributor Covenant Code of Conduct

Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or
advances of any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email
address, without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
davide AT uninstall.it.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series
of actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within
the community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant,
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by Mozilla's code of conduct
enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

 packbeam - atomvm_packbeam v0.7.5

packbeam

An escript and OTP library used to generate an AtomVM AVM file from a set of files (beam files, previously built AVM files, or even arbitrary data files).

 Summary

 Functions

 create(OutputPath, InputPaths)

 Deprecated. Use the packbeam_api module, instead.

 create(OutputPath, InputPaths, Prune, StartModule)

 Deprecated. Use the packbeam_api module, instead.

 delete(OutputPath, InputPath, Names)

 Deprecated. Use the packbeam_api module, instead.

 list(InputPath)

 Deprecated. Use the packbeam_api module, instead.

 Functions

 create(OutputPath, InputPaths)

Deprecated. Use the packbeam_api module, instead.

 create(OutputPath, InputPaths, Prune, StartModule)

Deprecated. Use the packbeam_api module, instead.

 delete(OutputPath, InputPath, Names)

Deprecated. Use the packbeam_api module, instead.

 list(InputPath)

Deprecated. Use the packbeam_api module, instead.

 packbeam_api - atomvm_packbeam v0.7.5

packbeam_api

A library used to generate an AtomVM AVM file from a set of files (beam files, previously built AVM files, or even arbitrary data files).

 Summary

 Types

 avm_element/0

 avm_element_name/0

 options/0

 path/0

 Functions

 create(OutputPath, InputPaths)

 Create an AVM file.

 create(OutputPath, InputPaths, Options)

 Create an AVM file.

 delete(OutputPath, InputPath, AVMElementNames)

 Delete selected elements of an AVM file.

 extract(InputPath, AVMElementNames, OutputDir)

 Extract all or selected elements from an AVM file.

 get_element_data(AVMElement)

 Return AVM element data.

 get_element_module(AVMElement)

 Return AVM element module, if the element is a BEAM file.

 get_element_name(AVMElement)

 Return the name of the element.

 is_beam(AVMElement)

 Indicates whether the AVM file element is a BEAM file.

 is_entrypoint(AVMElement)

 Indicates whether the AVM file element is an entrypoint.

 list(InputPath)

 List the contents of an AVM file.

 Types

 avm_element/0

 -opaque avm_element()

 avm_element_name/0

 -type avm_element_name() :: string().

 options/0

 -type options() ::
 #{prune => boolean(),
 start_module => module() | undefined,
 application_module => module() | undefined,
 include_lines => boolean()}.

 path/0

 -type path() :: string().

 Functions

 create(OutputPath, InputPaths)

