

    

        atomvm_rebar3_plugin

        v0.7.3



    



  

    Table of contents

    
      



            	atomvm_rebar3_plugin


            	Changelog


            	atomvm_rebar3_plugin Update Instructions


            	LICENSE


            	Contributing


            	Contributor Covenant Code of Conduct





  	Modules
    

    	atomvm_bootstrap_provider


    	atomvm_esp32_flash_provider


    	atomvm_packbeam_provider


    	atomvm_pico_flash_provider


    	atomvm_rebar3_plugin


    	atomvm_stm32_flash_provider


    	atomvm_uf2create_provider


    	atomvm_version_provider


    	legacy_esp32_flash_provider


    	legacy_packbeam_provider


    	legacy_stm32_flash_provider


    

  



      

    


  

    
atomvm_rebar3_plugin
    

A rebar3 plugin for simplifying development of Erlang applications targeted for the AtomVM Erlang abstract machine.

  
    
  
  Quick Start


Create or edit the $HOME/.config/rebar3/rebar.config file to include the atomvm_rebar3_plugin rebar3 plugin:
{plugins, [
    atomvm_rebar3_plugin
]}.
From a working directory, issue the following command:
shell$ rebar3 new atomvm_app myapp
===> Writing myapp/.gitignore
===> Writing myapp/LICENSE
===> Writing myapp/rebar.config
===> Writing myapp/README.md
===> Writing myapp/src/myapp.erl
===> Writing myapp/src/myapp.app.src
This task will create a simple rebar3 project with a minimal AtomVM application in the myapp directory.
Change to the myapp directory and issue the packbeam task to the rebar3 command:
shell$ cd myapp
shell$ rebar3 packbeam
===> Fetching atomvm_rebar3_plugin
===> Fetching packbeam
===> Compiling packbeam
===> Compiling atomvm_rebar3_plugin
===> Verifying dependencies...
===> Compiling myapp
===> AVM file written to .../myapp/_build/default/lib/myapp.avm
An AtomVM AVM file named myapp.avm is created in the _build/default/lib directory:
shell$ ls -l _build/default/lib/myapp.avm
-rw-rw-r--  1 joe  wheel  328 Jan 1 1970 00:01 _build/default/lib/myapp.avm
If you have it installed, you can use the packbeam tool to list the contents of this generated file:
shell$ packbeam list _build/default/lib/myapp.avm
myapp.beam * [384]
myapp/priv/application.bin [220]
See the various flash tasks described below for information about how to flash the generated AVM file to your device.

  
    
  
  atomvm_rebar3_plugin tasks


The rebar3 plugin provides the following tasks under the atomvm namespace:
	packbeam  Generate AtomVM packbeam files from your rebar3 project and its dependencies.
	esp32_flash  Flash AtomVM packbeam files to ESP32 devices over a serial connection.
	stm32_flash  Flash AtomVM packbeam files to STM32 devices over a serial connection.
	uf2create   Generate a u2f binary from an AtomVM packbeam file.
	pico_flash  Flash "packed" uf2 files to RP2040 (RPi Pico) devices by copying to FATfs.
	version  Print the version of the atomvm_rebar3_plugin to the console.
	bootstrap  Compile Erlang files that rebar3 otherwise cannot compile.  Typically, such files include modules from the OTP kernel or stdlib application that rebar3 uses internally for its own implementation.

IMPORTANT!  Some of the above tasks were previously located  under the default rebar3 namespace; however, the commands under the default namespace have been DEPRECATED.  Users will get a  warning message on the console when using deprecated tasks, and any deprecated tasks may be removed in the future without warning.  Be sure to migrate any scripts or code you have to use the atomvm namespace.

The tasks listed above are described in more detail below.

  
    
  
  Configuration


The tasks supported by this plugin support the following modes of configuration, ordered from highest to lowest in terms of their precedence:
	Command-line arguments
	rebar.config settings
	Environment variables
	Hard-wired defaults

Specifically, any options defined on the command line override options by the same name in rebar.config, which in turn override any corresponding environment variable settings, and so forth.
Configuration items for specific tasks are described in detail below for each of the supported tasks.
Any rebar.config settings are defined in the project's rebar.config project file, and are defined as property lists under the atomvm_rebar3_plugin key.  The properties in this list are themselves property lists, using the task name as a key, with task-specific configuration for each entry.
A typical rebar.config entry for this plugin therefore takes the form:
{atomvm_rebar3_plugin, [
    {packbeam, [...]},
    {esp32_flash, [...]},
    ...
]}.
Configuration in rebar.config is optional but can be useful in some cases.  For example, the flash tasks depend on the packbeam task, to ensure that the AVM file is up to date before flashing.  However, if the AVM file is rebuilt, the flash task has no way to tell the packbeam task any task-specific properties it should use as part of the rebuild.  If they are defined in rebar.config (or in environment variables), however, they will be used during an implicit rebuild of the AVM file.

  
    
  
  The packbeam task


The packbeam task is used to generated an AtomVM packbeam (.avm) file.
shell$ rebar3 help atovm packbeam

Use this plugin to create an AtomVM packbeam file from your rebar3 project.

Usage: rebar3 atomvm packbeam [-e <external>] [-f <force>] [-p <prune>]
                            [-s <start>] [-r <remove_lines>]

-e, --external      External AVM modules
-f, --force         Force rebuild
-p, --prune         Prune unreferenced BEAM files
-s, --start         Start module
-r, --remove_lines  Remove line information from generated AVM files
                    (off by default)
-l, --list          List the contents of AVM files after creation
E.g.,
shell$ rebar3 atomvm packbeam
===> Compiling packbeam
===> Compiling atomvm_rebar3_plugin
===> Compiling packbeam
===> Verifying dependencies...
===> Compiling myapp
===> AVM file written to .../myapp/_build/default/lib/myapp.avm
When using this task, an AVM file with the project name will be created in _build/<profile>/lib/, .e.g.,
shell$ ls -l _build/default/lib/myapp.avm
-rw-rw-r--  1 joe  wheel  8780 May 15 1895 22:03 _build/default/lib/myapp.avm
If your project has any erlang dependencies, the packbeam task will include any BEAM files or priv files from the dependent projects in the final AVM file.
If your project (or any of its dependencies) has multiple modules that export a start/0 entry-point function, you can specify which module to use as the entry-point for your application via the --start (or -s) option:
shell$ rebar3 atomvm packbeam --start my_start_module
...
Using this option will ensure that the generated AVM file with use my_start_module to start the application.
You may use the --prune option (or -p) to prune unnecessary beam files when creating AVM files.  Pruning unnecessary files can make your AVM files smaller, leading to faster development cycles and more free space on flash media.  Pruning is not enabled by default.  Note that if you use the prune option, your project (or at least one of its dependencies) must have a start/0 entry-point.  Otherwise, you should treat your project as a library, suitable for inclusion in a different AtomVM project.
By default, line number information is included in generated AVM files.  Including line number information is useful for debugging and locating the source of application crashes.  However, adding line number information makes AVM files larger and in some cases may have an impact on memory usage. You can remove line number information from your AVM files via the --remove_lines (or -r) flag, if, for example, you are prepared to deploy your application into production.
The packbeam task will use timestamps to determine whether a rebuild is necessary.  However, timestamps may not be enough to trigger a rebuild, for example, if a dependency was added or removed.  You can force a rebuild of AVM file by adding the --force flag (or -f), with no arguments.  All AVM files, including AVM files for dependencies, will be rebuilt regardless of timestamps.
If you would like to view the contents of the AVM file after you have created it, use the --list (of -l) flag to display the entries of the file on the console.  Entries which export a start/0 function are marked with an asterisk (*).  All entries include their size in bytes, wrapped in square brackets ([]).
shell$ rebar3 atomvm packbeam -l
...
===> AVM file written to .../myapp/_build/default/lib/myapp.avm
AVM contents
============
myapp.beam * [384]
myapp/priv/application.bin [228]
The following table enumerates the properties that may be defined in your project's rebar.config
file for this task.  Use packbeam as the key for any properties defined for this task.
Note that the --list flag is only operative when the AVM file has been written.  Use the --force (-f) flag to force a rebuild of the AVM file, if desired.

	Key	Type	Description
	force	boolean()	Always force a rebuild of the AVM file, even if up to date
	prune	boolean()	Prune unecessary BEAM files from generated AVM
	start	atom()	The start module
	remove_lines	boolean()	Remove line number information from generated AVM files.
	list	boolean()	List the AVM file contents when generating AVM files.

Example:
{atomvm_rebar3_plugin, [{packbeam, [prune, {start, main}]}]}.
Any setting specified on the command line take precedence over settings in rebar.config, which in turn take precedence over environment variable settings, which in turn take precedence over the default values specified above.
The packbeam task depends on the compile task, so any changes to modules in the project will automatically get rebuilt when running the packbeam task.
External Dependencies
If you already have AVM modules are not available via rebar3, you can direct the packbeam task to these AVM files via the --external (or -e) flag, e.g.,
shell$ rebar3 atomvm packbeam -e <path-to-avm-1> -e <path-to-avm-2> ...
===> Fetching packbeam
===> Compiling packbeam
===> Compiling atomvm_rebar3_plugin
===> Verifying dependencies...
===> Compiling myapp
===> AVM file written to .../myapp/_build/default/lib/myapp.avm
Building OTP Applications
You can use the packbeam task to build AtomVM applications that implements the OTP application behavior, and the atomvm_rebar3_plugin will create an AVM file that contains boot information to start your application automatically when AtomVM starts.
For example, a module that implements the OTP application behavior might look as follows:
%% erlang
-module(myapp_app).

-export([start/2, stop/1]).

start(_Type, Args) ->
    io:format("Starting myapp_app ...~n"),
    myapp_sup:start(Args).

stop(_State) ->
    myapp_sup:stop_children().
(assume myapp_sup is also a part of your OTP application).
And the application configuration file (e.g., myapp.app.src) should include the application mdoule (myapp_app) under it's mod entry:
{
    application, myapp, [
        {description, "My AtomVM application"},
        {vsn, "0.1.0"},
        {registered, []},
        {applications, [
            kernel,
            stdlib
        ]},
        {env,[]},
        {mod, {myapp_app, []}},
        {modules, []},
        {licenses, ["Apache-2.0"]},
        {links, []}
    ]
}.
If you specify init as the start module, then an AVM file will be created:
shell$ rebar3 atovm packbeam -p -s init
===> Analyzing applications...
===> Compiling atomvm_rebar3_plugin
===> Compiling packbeam
...
===> Analyzing applications...
===> Compiling myapp
===> AVM file written to .../myapp/_build/default/lib/myapp.avm
This AVM file will contain the init.beam module, along with a boot script (init/priv/start.boot), which will be used by the init.beam module to start your application automatically.
For example:
shell$ packbeam list _build/default/lib/myapp.avm
init.beam * [1428]
myapp_worker.beam [596]
myapp_sup.beam [572]
myapp_app.beam [416]
myapp/priv/application.bin [288]
init/priv/start.boot [56]
myapp/priv/example.txt [24]
Running this AVM file will boot the myapp application automatically, without having to write an entrypoint module.

  
    
  
  The esp32-flash task


You may use the esp32_flash task to flash the generated AtomVM packbeam application to the flash storage on an ESP32 device connected over a serial connection.
shell$ rebar3 help atomvm esp32_flash

Use this plugin to flash an AtomVM packbeam file to an ESP32 device.

Usage: rebar3 atomvm esp32_flash [-e <esptool>] [-c <chip>] [-p <port>]
                                [-b <baud>] [-o <offset>]

-e, --esptool  Path to esptool.py
-c, --chip     ESP chip (default auto)
-p, --port     Device port (default /dev/ttyUSB0)
-b, --baud     Baud rate (default 115200)
-o, --offset   Offset (default 0x210000)
The esp32_flash task will use the esptool.py command to flash the ESP32 device.  This tool is available via the <a href="https://docs.espressif.com/projects/esp-idf/en/latest/esp32/">IDF SDK</a>, or directly via <a href="https://github.com/espressif/esptool">github</a>.  The esptool.py command is also available via many package managers (e.g., MacOS Homebrew).
By default, the esp32_flash task will assume the esptool.py command is available on the user's executable path.  Alternatively, you may specify the full path to the esptool.py command via the -e (or --esptool) option
By default, the esp32_flash task will write to port /dev/ttyUSB0 at a baud rate of 115200.  You may control the port and baud settings for connecting to your ESP device via the -port and -baud options to the esp32_flash task, e.g.,
shell$ rebar3 atomvm esp32_flash --port /dev/tty.SLAB_USBtoUART --baud 921600
...
===> esptool.py --chip esp32 --port /dev/tty.SLAB_USBtoUART --baud 921600 --before default_reset --after hard_reset write_flash -u --flash_mode dio --flash_freq 40m --flash_size detect 0x110000 /home/joe/myapp/_build/default/lib/myapp.avm
esptool.py v2.1
Connecting........_
Chip is ESP32D0WDQ6 (revision 1)
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Configuring flash size...
Auto-detected Flash size: 4MB
Wrote 16384 bytes at 0x00110000 in 0.2 seconds (615.0 kbit/s)...
Hash of data verified.

Leaving...
Hard resetting...
The following table enumerates the properties that may be defined in your project's rebar.config file for this task.  Use esp32_flash as the key for any properties defined for this task.
	Key	Type	Description
	esptool	string()	Path to the esptool.py tool, if not already in user's PATH
	chip	string()	ESP32 chipt type
	port	string()	Device port on which the ESP32 can be located
	baud	integer()	Device BAUD rate
	offset	string()	Offset into which to write AtomVM application

Example:
{atomvm_rebar3_plugin, [{esp32_flash, [{baud, 921600}]}]}.
Alternatively, the following environment variables may be used to control the above settings:
	ATOMVM_REBAR3_PLUGIN_ESP32_FLASH_ESPTOOL
	ATOMVM_REBAR3_PLUGIN_ESP32_FLASH_CHIP
	ATOMVM_REBAR3_PLUGIN_ESP32_FLASH_PORT
	ATOMVM_REBAR3_PLUGIN_ESP32_FLASH_BAUD
	ATOMVM_REBAR3_PLUGIN_ESP32_FLASH_OFFSET

Any setting specified on the command line take precedence over settings in rebar.config, which in turn take precedence over environment variable settings, which in turn take precedence over the default values specified above.
The esp32_flash task depends on the packbeam task, so the packbeam file will get automatically built if any changes have been made to its dependencies.

  
    
  
  The stm32_flash task


You may use the stm32_flash task to flash the generated AtomVM packbeam application to the flash storage on an STM32 device connected to an st-link.
Preparing an application for flashing
The stm32 builds of AtomVM do not include a library partition and the AtomVM atomvmlib.avm core library is not flashed to the device. Instead the application should be compiled and packed along with atomvmlib.avm before flashing, for example:
shell$ rebar3 atomvm packbeam -p -e /path/to/atomvmlib.avm
You can acquire the latest AtomVM atomvmlib.avm core library from the Release section of the AtomVM Github repository.  Note that the version of the atomvmlib.avm core library must match the version of the AtomVM virtual machine image you have flashed to the device.
Flashing an application to a stm32 device
You may use the stm32_flash task to flash the generated AtomVM packbeam application to the flash storage on an STM32 device connected to an st-link.
shell$ rebar3 help atomvm stm32_flash

Use this plugin to flash an AtomVM packbeam file to an STM32 device.

Usage: rebar3 atomvm stm32_flash [-s <stflash>] [-o <offset>]

-s, --stflash  Path to st-flash
-o, --offset   Offset (default 0x8080000)
The stm32_flash will use the st-flash tool from the open source (bsd-3 liscensed) stlink suite of stm32 utilites to flash the STM32 device. This tool is available on github, and in many package managers.
By default, the stm32_flash task will assume the st-flash command is available on the user's executable path.  Alternatively, you may specify the full path to the st-flash command via the -s (or --stflash) option
shell$ rebar3 atomvm stm32_flash --stflash /usr/bin/st-flash --offset 0x8080000
===> Verifying dependencies...
===> Analyzing applications...
===> Compiling stm32_hello
===> st-flash --reset write /home/atomvm/AtomVM/stm32_hello/_build/default/lib/stm32_hello.avm 0x8080000

st-flash 1.7.0
2023-07-09T21:42:26 INFO common.c: F42x/F43x: 256 KiB SRAM, 2048 KiB flash in at least 16 KiB pages.
file /home/atomvm/AtomVM/stm32_hello/_build/default/lib/stm32_hello.avm md5 checksum: 5747b8eab41a3696097eb386c785e, stlink checksum: 0x00154e50
2023-07-09T21:42:26 INFO common.c: Attempting to write 29304 (0x7278) bytes to stm32 address: 134742016 (0x8080000)
EraseFlash - Sector:0x8 Size:0x20000 2023-07-09T21:42:28 INFO common.c: Flash page at addr: 0x08080000 erased
2023-07-09T21:42:28 INFO common.c: Finished erasing 1 pages of 131072 (0x20000) bytes
2023-07-09T21:42:28 INFO common.c: Starting Flash write for F2/F4/F7/L4
2023-07-09T21:42:28 INFO flash_loader.c: Successfully loaded flash loader in sram
2023-07-09T21:42:28 INFO flash_loader.c: Clear DFSR
2023-07-09T21:42:28 INFO common.c: enabling 32-bit flash writes
2023-07-09T21:42:29 INFO common.c: Starting verification of write complete
2023-07-09T21:42:29 INFO common.c: Flash written and verified! jolly good!
The following table enumerates the properties that may be defined in your project's rebar.config file for this task.  Use stm32_flash as the key for any properties defined for this task.
	Key	Type	Description
	stflash	string()	Path to the st-flash tool, if not already in user's PATH
	offset	string()	Offset into which to write AtomVM application

Example:
{atomvm_rebar3_plugin, [{stm32_flash, [{offset, "0x230000"}]}]}.
Alternatively, the following environment variables may be used to control the above settings:
	ATOMVM_REBAR3_PLUGIN_STM32_STFLASH
	ATOMVM_REBAR3_PLUGIN_STM32_FLASH_OFFSET

Any setting specified on the command line take precedence over entries in rebar.config, which in turn take precedence over environment variable settings, which in turn take precedence over the default values specified above.
The stm32_flash task depends on the packbeam task, so the packbeam file will get automatically built if any changes have been made to its dependencies.

  
    
  
  The pico_flash task


Flashing an application to a pico (rp2040) device
You may use the pico_flash task to copy the generated AtomVM packbeam application in uf2 format to the flash storage on an Pico device connected to usb. It is not necessary to push the BOOTSEL button while plugging in the Pico to usb, instead provide the path of the device to reset. On Linux this is typically /dev/ttyACM0 (the same device used to monitor serial), on MacOS it is a cu.usbmodem device matching /dev/cu.usbmodem14* (not the /dev/tty.usbmodem14_ device used for serial monitoring).
shell$ rebar3 help atomvm pico_flash

Use this plugin to convert an AtomVM packbeam file to a rp2040 a uf2 file and copy to an rp2040 devices.

Usage: rebar3 atomvm pico_flash [-p <path>] [-r <reset>]

-p, --path   Path to pico device (Defaults Linux:
            /run/media/${USER}/RPI-RP2, MacOS: /Volumes/RPI-RP2)
-r, --reset  Path to serial device to reset before flashing (Defaults
            Linux: /dev/ttyACM0, MacOS: /dev/cu.usbmodem14*)
The pico_flash task depends on the uf2create task which in turn depends on packbeam, so in most cases it is not necessary to execute either of those tasks if the default settings are used, as any changes to modules in the project will get rebuilt before being flashed to the device.
shell$ rebar3 atomvm pico_flash
===> Fetching atomvm_rebar3_plugin v0.7.3
===> Fetching rebar3_hex v7.0.6
===> Fetching hex_core v0.8.4
===> Fetching verl v1.1.1
===> Analyzing applications...
===> Compiling hex_core
===> Compiling verl
===> Compiling rebar3_hex
===> Fetching atomvm_packbeam v0.6.0
===> Fetching rebar3_proper v0.12.1
===> Analyzing applications...
===> Compiling rebar3_proper
===> Analyzing applications...
===> Compiling packbeam
===> Compiling atomvm_rebar3_plugin
===> Verifying dependencies...
===> Analyzing applications...
===> Compiling hello_world
===> AVM file written to /home/joe/projects/hello_world/_build/default/lib/hello_world/hello_world.avm
===> Resetting device at path /dev/ttyACM0
===> Waiting for the device at path /run/media/${USER}/RPI-RP2 to settle and mount...
===> Copying /home/joe/projects/hello/_build/default/lib/hello.uf2 to /run/media/${USER}/RPI-RP2...

'/home/joe/projects/hello_world/_build/default/lib/hello_world.uf2' -> '/run/media/joe/RPI-RP2/hello_world.uf2'
If your pico uses a different device path or mount directory supply the full path needed for your device:
shell$ rebar3 atomvm pico_flash --path /mnt/pico --reset /dev/cu.usbmodem1411202
Warning: There is currently a known bug that occurs when the VM is compiled with the -DAVM_WAIT_FOR_USB_CONNECT cmake option. If you have previously connected to the tty serial port with screen, minicom, or similar and have disconnected or closed the session, the device will take unusually long to reset and fail to mount the FAT partition within 30 seconds and pico_flash will fail. This can be worked around by unplugging the pico from usb and plug it back in again, before repeating the flash procedure.

The following table enumerates the properties that may be defined in your project's rebar.config file for this task.  Use pico_flash as the key for any properties defined for this task.
	Key	Type	Description
	path	string()	Path to pico device
	reset	string()	Path to serial device to reset before flashing

Example:
{atomvm_rebar3_plugin, [{pico_flash, [{reset, "/dev/cu.usbmodem1411202"}]}]}.
Alternatively, the following environment variables may be used to control the above settings:
	ATOMVM_REBAR3_PLUGIN_PICO_MOUNT_PATH
	ATOMVM_REBAR3_PLUGIN_PICO_RESET_DEV

Any setting specified on the command line take precedence over entries in rebar.config, which in turn take precedence over environment variable settings, which in turn take precedence over the default values specified above.
The pico_flash task depends on the uf2create task (which in turn depends on the packbeam  task), so the so the application will be packed and re-formatted if any changes have been made to dependencies.

  
    
  
  The uf2create task


The uf2create task is used to generated an uf2 binary suitable for running on a Pico (RP2040) device from an AtomVM packbeam (.avm) file.
shell$ rebar3 help atomvm uf2create

Use this plugin to create Raspberry Pico uf2 files from an AtomVM packbeam file.

Usage: rebar3 atomvm uf2create [-o <output>] [-s <start>] [-i <input>]

-o, --output  Output path/name
-s, --start   Start address for the uf2 binary (default 0x10180000)
-i, --input   Input avm file to convert to uf2
It should not be necessary to use this tool before using pico_flash, unless you have built a custom VM that requires changing the start address of the uf2 binary. If the application has not been compiled, or packed with packbeam, these steps will be run first using the default settings for packbeam.
The following table enumerates the properties that may be defined in your project's rebar.config file for this task.  Use uf2create as the key for any properties defined for this task.
	Key	Type	Description
	start	string()	Start address for the uf2 binary

Example:
{atomvm_rebar3_plugin, [{uf2create, [{start, "0x10180000"}]}]}.
Alternatively, the following environment variables may be used to control the above settings:
	ATOMVM_REBAR3_PLUGIN_UF2CREATE_START

Any setting specified on the command line take precedence over entries in rebar.config, which in turn take precedence over environment variable settings, which in turn take precedence over the default values specified above.
The uf2create task depends on the packbeam task, so the packbeam file will get automatically built if any changes have been made to its dependencies.

  
    
  
  The version task


use the version task to print the current verison of the atomvm_rebar3_plugin to the console.
shell$ rebar3 atomvm version
0.7.3

  
    
  
  The bootstrap task


Use the bootstrap task to compile Erlang files that rebar3 is otherwise unable to compile.  Typically, such files include modules from the OTP kernel or stdlib application that rebar3 uses internally for its own implementation.
Note.  The default rebar3 compile task has the unfortunate feature (bug?) that it will load files that it compiles, which can be problematic if you are compiling modules that share names with modules that rebar3 is using as part of its own implementation.

shell$ rebar3 help atomvm bootstrap

This plugin is used internally by the atomvm packbeam task to compile
modules that cannot be compiled directly by rebar.

Users typically have no reason to use this task directly.

Usage: rebar3 atomvm tstrap [-b <bootstrap_dir>] [-f <force>]

-b, --bootstrap_dir  Bootstrap directory
-f, --force         Force rebuild
To use this task, place files that you would like to have compiled by the task in the bootstrap directory of your rebar3 project (or in a directory of your choosing -- see below).
shell$ ls bootstrap
application.erl
Files in this directory will be compiled and included in any generated PackBEAM files.
Note.  The bootstrap task is used internally by the atomvm_rebar3_plugin when the packbeam task is run.  Users typically do not have a need to run this task manually.

The following table enumerates the properties that may be defined in your project's rebar.config file for this task.  Use bootstrap as the key for any properties defined for this task.
	Key	Type	Description
	force	boolean()	Always force recompilation of bootstrap files, even if up to date
	bootstrap_dir	string() | undefined	(Optional) path to a directory containing bootstrap files.  By default, the bootstrap task will use the bootstrap directory in the top-level project directory.  The path may be relative (to where the command is run) or absolute.

Example:
{atomvm_rebar3_plugin, [
    {bootstrap, [
        {bootstrap_dir, "/path/to/bootstrap_dir"}, force
    ]}
]}.
Any setting specified on the command line take precedence over entries in rebar.config, which in turn take precedence over the default values specified above.

  
    
  
  AtomVM App Template


The atomvm_rebar3_plugin contains template definitions for generating skeletal rebar3 projects.
The best way to make use of this template is to include the atomvm_rebar3_plugin in your $HOME/.config/rebar3/rebar.config file, e.g.,
{plugins, [
    atomvm_rebar3_plugin
]}.
You can then generate a minimal AtomVM application as follows:
shell$ rebar3 new atomvm_app myapp
===> Writing myapp/.gitignore
===> Writing myapp/LICENSE
===> Writing myapp/rebar.config
===> Writing myapp/README.md
===> Writing myapp/src/myapp.erl
===> Writing myapp/src/myapp.app.src
This task will create a simple rebar3 project with a minimal AtomVM application in the myapp directory.
Change to the myapp directory and issue the packbeam task to the rebar3 command:
shell$ cd myapp
shell$ rebar3 packbeam
===> Fetching atomvm_rebar3_plugin
===> Fetching packbeam
===> Compiling packbeam
===> Compiling atomvm_rebar3_plugin
===> Verifying dependencies...
===> Compiling myapp
===> AVM file written to .../myapp/_build/default/lib/myapp.avm
An AtomVM AVM file is created in the _build/default/lib directory:
shell$ ls -l _build/default/lib/myapp.avm
-rw-rw-r--  1 joe  wheel  328 Jan 1 1970 00:01 _build/default/lib/myapp.avm



  

    
Changelog
    

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

  
    
  
  [0.7.3] (2023.11.25)


	Added support for compiling "bootstrap" erlang files that rebar3 otherwise cannot compile.
	Added profiles to minimize downstream dependencies
	Misc license cleanup


  
    
  
  [0.7.2] (2023.10.24)


	Updated to depend on atomvm_packbeam version 0.7.1, to make use of packbeam_api changes.
	Added tests for packbeam, esp32, and stm32 tasks.
	Generate ex_doc documentation instead of edoc.
	Added version task to print the version of the plugin to the console


  
    
  
  [0.7.1] (2023.10.18)


	Fixed a bug whereby a missing atomvm_rebar3_plugin entry in rebar.config would crash the packbeam task.


  
    
  
  [0.7.0] (2023.10.18)


	Moved atomvm tasks under the atomvm namespace (with support for deprecated tasks in the default namespace)
	Added utf2create and pico_flash tasks, for Raspberry Pico support
	Added support for setting options in rebar.config
	Added --list (-l) option to packbeam to to display contents of generated AVM files.


  
    
  
  [0.6.1] (2023.07.16)



  
    
  
  Added


	Added stm32_flash rebar3 task
	Added -r|--remove_lines command line option to packbeam task


  
    
  
  Changed


	Updated dependency on atomvm_packbeam 0.6 or later
	Changed default to not remove lines from generated AVM files


  
    
  
  [0.6.0] (2022.12.18)



  
    
  
  Added


	Added ability to include <<"Line">> chunks in BEAM files in generated AVM files


  
    
  
  Changed


	Updated dependency on atomvm_packbeam 0.6.0


  
    
  
  [0.5.1] (2022.08.31)



  
    
  
  Fixed


	Fixed Hex dependency on atomvm_packbeam 0.5.0


  
    
  
  [0.5.0] (2022.08.28)



  
    
  
  Added


	Added packing of application bin file to packbeam file.


  
    
  
  [0.4.1] (2022.06.19)



  
    
  
  Changed


	Updated dependency on atomvm_packbeam 0.4.1


  
    
  
  [0.4.0] (2022.05.21)



  
    
  
  Added


	Added erlfmt plugin and formatted code.
	Added --chip option to esp32_flash task


  
    
  
  Fixed


	Fixed a bug that prevented files in directories inside of the priv directory to be included in packbeam files.


  
    
  
  [0.3.0] (2022.05.18)



  
    
  
  Changed


	Updated dependency on atomvm_packbeam 0.3.0


  
    
  
  [0.2.0] (?)



  
    
  
  Added


	Added plugin template for generating applications
	Added support for deployment to hex
	Added support for --start flag


  
    
  
  Changed


	Updated default flash location


  
    
  
  [0.1.0] (2020.05.17)


	Initial Release




  

    
atomvm_rebar3_plugin Update Instructions
    


  
    
  
  0.6. -> 0.7.


	The atomvm_rebar3_plugin tasks have been moved into the atomvm namespace (from the rebar3 default namespace).  The "legacy" tasks in the default namespace are deprecated, and users will be issued a warning when used.  Be sure to use the atomvm namespace in any future usage of this plugin, as the deprecated tasks may be removed without warning.  E.g., rebar3 atomvm packbeam ...

	The default behavior of not generating line number information in BEAM files has changed.  By default, line number information will be generated in BEAM files.  You can remove line number information using from BEAM files by using the -r (or --remove_lines) flags to the packbeam task.  Note that in versions 0.6 of this tool, the --include_lines flag was ignored due to a bug in the code.





  

    
LICENSE
    


                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   Copyright 2020, Fred Dushin <fred@dushin.net>.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.




  

    
Contributing
    

Before contributing, please read carefully our Code of Conduct and
the following contribution guidelines.
Please, also make sure to understand the Apache-2.0 license and the
Developer Certificate of Origin.
Last but not least, do not use GitHub issues for vulnerability reports, read instead the
security policy for instructions.

  
    
  
  Git Recommended Practises


	Commit messages should have a
	summary and a description
	Avoid trailing white spaces
	Always git pull --rebase
	Clean up your branch history with
git rebase -i
	All your intermediate commits should build


  
    
  
  Coding Style



  
    
  
  C Code


Identation
	
  
    
    Contributor Covenant Code of Conduct - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
Contributor Covenant Code of Conduct
    


  
    
  
  Our Pledge


We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

  
    
  
  Our Standards


Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or
advances of any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email
address, without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting


  
    
  
  Enforcement Responsibilities


Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

  
    
  
  Scope


This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

  
    
  
  Enforcement


Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
davide AT uninstall.it.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

  
    
  
  Enforcement Guidelines


Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

  
    
  
  1. Correction


Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

  
    
  
  2. Warning


Community Impact: A violation through a single incident or series
of actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.

  
    
  
  3. Temporary Ban


Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

  
    
  
  4. Permanent Ban


Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior,  harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within
the community.

  
    
  
  Attribution


This Code of Conduct is adapted from the Contributor Covenant,
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by Mozilla's code of conduct
enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.



  

  
    
    atomvm_bootstrap_provider - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
atomvm_bootstrap_provider 
    




      
        Summary


  
    Functions
  


    
      
        do(State)

      


    


    
      
        format_error(Reason)

      


    


    
      
        init(State)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    do(State)


      
       
       View Source
     


  


  

      

          -spec do(rebar_state:t()) -> {ok, rebar_state:t()} | {error, string()}.


      



  



  
    
      
      Link to this function
    
    format_error(Reason)


      
       
       View Source
     


  


  

      

          -spec format_error(any()) -> iolist().


      



  



  
    
      
      Link to this function
    
    init(State)


      
       
       View Source
     


  


  

      

          -spec init(rebar_state:t()) -> {ok, rebar_state:t()}.


      



  


        

      



  

  
    
    atomvm_esp32_flash_provider - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
atomvm_esp32_flash_provider 
    




      
        Summary


  
    Functions
  


    
      
        do(State)

      


    


    
      
        format_error(Reason)

      


    


    
      
        init(State)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    do(State)


      
       
       View Source
     


  


  

      

          -spec do(rebar_state:t()) -> {ok, rebar_state:t()} | {error, string()}.


      



  



  
    
      
      Link to this function
    
    format_error(Reason)


      
       
       View Source
     


  


  

      

          -spec format_error(any()) -> iolist().


      



  



  
    
      
      Link to this function
    
    init(State)


      
       
       View Source
     


  


  

      

          -spec init(rebar_state:t()) -> {ok, rebar_state:t()}.


      



  


        

      



  

  
    
    atomvm_packbeam_provider - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
atomvm_packbeam_provider 
    




      
        Summary


  
    Functions
  


    
      
        do(State)

      


    


    
      
        format_error(Reason)

      


    


    
      
        init(State)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    do(State)


      
       
       View Source
     


  


  

      

          -spec do(rebar_state:t()) -> {ok, rebar_state:t()} | {error, string()}.


      



  



  
    
      
      Link to this function
    
    format_error(Reason)


      
       
       View Source
     


  


  

      

          -spec format_error(any()) -> iolist().


      



  



  
    
      
      Link to this function
    
    init(State)


      
       
       View Source
     


  


  

      

          -spec init(rebar_state:t()) -> {ok, rebar_state:t()}.


      



  


        

      



  

  
    
    atomvm_pico_flash_provider - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
atomvm_pico_flash_provider 
    




      
        Summary


  
    Functions
  


    
      
        do(State)

      


    


    
      
        format_error(Reason)

      


    


    
      
        init(State)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    do(State)


      
       
       View Source
     


  


  

      

          -spec do(rebar_state:t()) -> {ok, rebar_state:t()} | {error, string()}.


      



  



  
    
      
      Link to this function
    
    format_error(Reason)


      
       
       View Source
     


  


  

      

          -spec format_error(any()) -> iolist().


      



  



  
    
      
      Link to this function
    
    init(State)


      
       
       View Source
     


  


  

      

          -spec init(rebar_state:t()) -> {ok, rebar_state:t()}.


      



  


        

      



  

  
    
    atomvm_rebar3_plugin - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
atomvm_rebar3_plugin 
    




      
        Summary


  
    Types
  


    
      
        proplist/0

      


    





  
    Functions
  


    
      
        get_atomvm_rebar_provider_config(State, Provider)

      


    


    
      
        init(State)

      


    


    
      
        proplist_to_map(Proplist)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    proplist/0


      
       
       View Source
     


  


  

      

          -type proplist() :: [{term(), term()} | term()].


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    get_atomvm_rebar_provider_config(State, Provider)


      
       
       View Source
     


  


  

      

          -spec get_atomvm_rebar_provider_config(State :: term(), Provider :: atom()) -> map().


      



  



  
    
      
      Link to this function
    
    init(State)


      
       
       View Source
     


  


  

      

          -spec init(rebar_state:t()) -> {ok, rebar_state:t()}.


      



  



  
    
      
      Link to this function
    
    proplist_to_map(Proplist)


      
       
       View Source
     


  


  

      

          -spec proplist_to_map(Proplist :: proplist()) -> map().


      



  


        

      



  

  
    
    atomvm_stm32_flash_provider - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
atomvm_stm32_flash_provider 
    




      
        Summary


  
    Functions
  


    
      
        do(State)

      


    


    
      
        format_error(Reason)

      


    


    
      
        init(State)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    do(State)


      
       
       View Source
     


  


  

      

          -spec do(rebar_state:t()) -> {ok, rebar_state:t()} | {error, string()}.


      



  



  
    
      
      Link to this function
    
    format_error(Reason)


      
       
       View Source
     


  


  

      

          -spec format_error(any()) -> iolist().


      



  



  
    
      
      Link to this function
    
    init(State)


      
       
       View Source
     


  


  

      

          -spec init(rebar_state:t()) -> {ok, rebar_state:t()}.


      



  


        

      



  

  
    
    atomvm_uf2create_provider - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
atomvm_uf2create_provider 
    




      
        Summary


  
    Functions
  


    
      
        do(State)

      


    


    
      
        format_error(Reason)

      


    


    
      
        init(State)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    do(State)


      
       
       View Source
     


  


  

      

          -spec do(rebar_state:t()) -> {ok, rebar_state:t()} | {error, string()}.


      



  



  
    
      
      Link to this function
    
    format_error(Reason)


      
       
       View Source
     


  


  

      

          -spec format_error(any()) -> iolist().


      



  



  
    
      
      Link to this function
    
    init(State)


      
       
       View Source
     


  


  

      

          -spec init(rebar_state:t()) -> {ok, rebar_state:t()}.


      



  


        

      



  

  
    
    atomvm_version_provider - atomvm_rebar3_plugin v0.7.3
    
    

    



  
  

    
atomvm_version_provider 
    




      
        Summary


  
    Functions
  


    
      
        do(State)

      


    


    
      
        format_error(Reason)

      


    


    
      
        init(State)

      


    





      


      
        Functions

        


  
    
      
      Link to this function
    
    do(State)


      
       
       View Source
     


  


  

      

          -spec do(rebar_state:t()) -> {ok, rebar_state:t()} | {error, string()}.


      



  



  
    
      
      Link to this function
    
    format_error(Reason)


      
       
       View So